Computationally Efficient Cepstral Domain Feature Compensation

نویسندگان

  • Woohyung Lim
  • Chang Woo Han
  • Nam Soo Kim
چکیده

In this letter, we propose a novel approach to feature compensation performed in the cepstral domain. Processing in the cepstral domain has the advantage that the spectral correlation among different frequencies is taken into consideration. By introducing a linear approximation with diagonal covariance assumption, we modify the conventional log-spectral domain feature compensation technique to fit to the cepstral domain. The proposed approach shows significant improvements in the AURORA2 speech recognition task. key words: feature compensation, cepstral domain, linear approximation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Speaker and Noise Normalization for Robust Speech Recognition

In this paper, we describe a computationally efficient approach for combining speaker and noise normalization techniques. In particular, we combine the simple yet effective Histogram Equalization (HEQ) for noise compensation with Vocal-tract length normalization (VTLN) for speaker-normalization. While it is intuitive to remove noise first and then perform VTLN, this is difficult since HEQ perfo...

متن کامل

A generalized framework for compensation of mel-filterbank outputs in feature extraction for robust ASR

This paper describes a novel and efficient noise-robust frontend that utilizes a set of Mel-filterbank output compensation methods, together with cumulative distribution mapping of cepstral coefficients, for noisy speech recognition. The proposed compensation framework includes the use of noise spectral subtraction, spectral flooring and log Mel-filterbank output weighting. Recognition experime...

متن کامل

A fast approach to psychoacoustic model compensation for robust speaker recognition in additive noise

This paper addresses the problem of speaker verification in the presence of additive noise. We propose a fast implementation of Psychoacoustic Model Compensation (Psy-Comp) scheme for static features along with model domain mean and variance normalization for robust speaker recognition in noisy conditions. The proposed algorithms are validated through experiments on noise corrupted NIST-2000 sp...

متن کامل

Feature compensation in the cepstral domain employing model combination

In this paper, we present an effective cepstral feature compensation scheme which leverages knowledge of the speech model in order to achieve robust speech recognition. In the proposed scheme, the requirement for a prior noisy speech database in off-line training is eliminated by employing parallel model combination for the noise-corrupted speech model. Gaussian mixture models of clean speech a...

متن کامل

Speech feature compensation based on pseudo stereo codebooks for robust speech recognition in additive noise environments

In this paper, we propose several compensation approaches to alleviate the effect of additive noise on speech features for speech recognition. These approaches are simple yet efficient noise reduction techniques that use online constructed pseudo stereo codebooks to evaluate the statistics in both clean and noisy environments. The process yields transforms for noisecorrupted speech features to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 92-D  شماره 

صفحات  -

تاریخ انتشار 2009